Improved Frame Level Features and SVM Supervectors Approach for the Recogniton of Emotional States from Speech: Application to categorical and dimensional states

نویسندگان

  • Imen Trabelsi
  • Dorra Ben Ayed Mezghanni
  • Noureddine Ellouze
چکیده

The purpose of speech emotion recognition system is to classify speaker's utterances into different emotional states such as disgust, boredom, sadness, neutral and happiness. Speech features that are commonly used in speech emotion recognition (SER) rely on global utterance level prosodic features. In our work, we evaluate the impact of frame-level feature extraction. The speech samples are from Berlin emot ional database and the features extracted from these utterances are energy, different variant of mel frequency cepstrum coefficients (MFCC), velocity and accelerat ion features. The idea is to explore the successful approach in the literature of speaker recognition GMM-UBM to handle with emotion identification tasks. In addition, we propose a classification scheme for the labeling of emotions on a continuous dimensional-based approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Emotion Recognition Approach based on Wavelet Transform and Second-Order Difference Plot of ECG

Emotion, as a psychophysiological state, plays an important role in human communications and daily life. Emotion studies related to the physiological signals are recently the subject of many researches. In This study a hybrid feature based approach was proposed to examine affective states. To this effect, Electrocardiogram (ECG) signals of 47 students were recorded using pictorial emotion elici...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

Speech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions

Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...

متن کامل

Study on Unit-Selection and Statistical Parametric Speech Synthesis Techniques

One of the interesting topics on multimedia domain is concerned with empowering computer in order to speech production. Speech synthesis is granting human abilities to the computer for speech production. Data-based approach and process-based approach are the two main approaches on speech synthesis. Each approach has its varied challenges. Unit-selection speech synthesis and statistical parametr...

متن کامل

Combination of Empirical Mode Decomposition Components of HRV Signals for Discriminating Emotional States

Introduction Automatic human emotion recognition is one of the most interesting topics in the field of affective computing. However, development of a reliable approach with a reasonable recognition rate is a challenging task. The main objective of the present study was to propose a robust method for discrimination of emotional responses thorough examination of heart rate variability (HRV). In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1406.6101  شماره 

صفحات  -

تاریخ انتشار 2013